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Survival Probabilities for Discrete-Time Models
in One Dimension
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We consider survival probabilities for the discrete-time process in one dimen-
sion, which is known as the Domany�Kinzel model. A convergence theorem for
infinite systems can be obtained in the nonattractive case.
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1. INTRODUCTION

In this paper we consider the following discrete-time process !A
n at time n

starting from A/2Z whose evolution satisfies:

(i) P(x # !A
n+1 | !A

n )= f ( |!A
n & [x&1, x+1]| ),

(ii) given !A
n , the events [x # !A

n+1] are independent, where

f (0)=0, f (1)= p1 , and f (2)= p2

with p1 , p2 # [0, 1]. This process can be considered on a space S=[s=
(x, n) # Z_Z+ : x+n=even], where Z+=[0, 1, 2,...]. See pp. 90�98 in
Durrett(1) for details. This class was first studied by Domany and Kinzel, (2)

so it is often called the Domany�Kinzel model.
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The oriented bond percolation ( p1= p, p2=2p& p2) and the oriented
site percolation ( p1= p2= p) are special cases. The mixed site-bond oriented
percolation with the probability of open site : and with the probability of
open bond ; corresponds to the case of p1=:; and p2=:(2;&;2). The
reader is referred to (1).

When 0�p1�p2�1, this process is called ``attractive'' and has the
following nice property: if !A

n /!B
n , then we can guarantee that !A

n+1/!B
n+1

by using an appropriate coupling.
In the present paper, we study the existence and expression of survival

probabilities for this process. In particular, the nonattractive case is inter-
esting, since little results are known on this problem. From now on we will
explain the background of our research. Let Y=[A/2Z : |A|<�] where
|A| is the cardinality of A.

The first fundamental fact is that for any p1 , p2 # [0, 1] and A/2Z,

lim
n � �

P(!A
2n{<)

exists, since < is an absorbing set.
The second fact is given in the attractive case. That is, for any

0�p1�p2�1 and A/2Z, B # Y,

lim
n � �

P(!A
2n & B{<)

exists. This result follows from the following ``complete convergence
theorem'': for any A/2Z,

!A
2n O P({A<�) $<+P({A=�) !2Z

� as n � � (1.1)

where O means weak convergence, {A=inf[n: !A
2n=<], $< is the point-

mass on <, and a limit !2Z
� is a stationary distribution for the attractive

process. The above complete convergence theorem can be obtained by
similar arguments for the lemma in Griffeath(3) (see also Section 5c of
Durrett(1)) which treated a continuous time version. Furthermore, as an
immediate consequence of this theorem, we have

lim
n � �

P(!A
2n & B{<)=P({A=�) P(!2Z

� & B{<) (1.2)

for any A/2Z, B # Y. In order to clarify the above observation, here we
introduce the following notation on survival probabilities starting from A
on B by

_(A, B)= lim
n � �

P(!A
2n & B{<) (1.3)
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if the right-hand side exists. Using the notation given by (1.3), we can
rewrite the above mentioned facts as follows:

(i) If p1 , p2 # [0, 1] and A/2Z, then _(A, 2Z) exists.

(ii) If 0�p1�p2�1 (attractive case) and A/2Z, B # Y, then
_(A, B) exists, in particular, _(2Z, B) exists. Moreover

_(A, B)=_(A, 2Z) _(2Z, B) (1.4)

Therefore, it is natural to ask whether or not _(2Z, A) exists if A is finite
even in the nonattractive case. The next main theorem gives not only an
affirmative answer but also an expression of _(2Z, A) by using _(D, 2Z)
with D/A in a more general setting, i.e., p1 # [0, 1), p2 # (0, 1] and p2<2p1 .

Theorem 1. We assume that p1 # [0, 1), p2 # (0, 1] and p2<2p1 .
For any A # Y,

_(2Z, A)= :
D/A, D{<

: |D|(1&:) |A"D| _(D, 2Z) (1.5)

where := p2
1 �(2p1& p2). In particular, if A=[x], then

_(2Z, [x])=:_([x], 2Z)

If A=[x, y] with x{ y, then

_(2Z, [x, y])=2:(1&:) _([x], 2Z)+:2_([x, y], 2Z)

We should remark that it is easy to see that the process with p1 #
[0, 0.5] and p2 # [0, 1] starting from a finite set dies out by comparison
with a branching process Zn as follows. Each particle gives rise to Y par-
ticles in the next generation where Y is given by P(Y=2)= p2

1 , P(Y=1)=
2p1(1& p1), P(Y=0)=(1& p1)2. For details, see p. 97 in Durrett.(1)

In the case of p2�2p1 , the process is attractive ( p2�p1), and
_(2Z, A)=0 if A is finite (see the above discussion), so this case is not
interesting. On the other hand, the above theorem implies that for any
finite A, _(2Z, A) exists in the case of p2<2p1 except for p1=1 or p2=0.
The crucial point is that this result treats even the nonattractive case
( p2<p1).

Conversely, from Theorem 1, we can express _(A, 2Z) by using
_(2Z, D) with D/A. To see this, we put

\(2Z, A)=(1�(1&:)) |A| _(2Z, A)

\(A, 2Z)=(:�(1&:)) |A| _(A, 2Z)
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Then from (1.5) we have

\(2Z, A)= :
D/A, D{<

\(D, 2Z)

and so by the Mo� bius transformation we can obtain

\(A, 2Z)= :
D/A, D{<

(&1) |A|&|D| \(2Z, D)

Hence

_(A, 2Z)=((1&:)�:) |A| :
D/A, D{<

(&1) |A|&|D| (1�(1&:)) |D| _(2Z, D)

= :
D/A, D{<

(1&:) |D| ((:&1)�:) |A|&|D| _(2Z, D)

This gives the desired expression: for any A # Y,

_(A, 2Z)= :
D/A, D{<

(1�:) |D| ((:&1)�:) |A"D| _(2Z, S) (1.6)

In the proof of Theorem 1, we introduce a new construction of the
process using a signed measure with := p2

1 �(2p1& p2) and ;=2& p2 �p1 .
More detailed discussions will be found in the next section which is
devoted to the proof of Theorem 1.

From this theorem we can immediately get the following convergence
theorem which applies to some nonattractive models. (The standard argu-
ment can be found in p. 71 of (1).)

Corollary 2. We assume that p1 # [0, 1), p2 # (0, 1] and p2<2p1 .
Then we have

P(!2Z
2n # } ) O + as n � �

where + is the translation invariant probability measure such that

+(! & A{<)= :
D/A, D{<

: |D|(1&:) |A"D| _(D, 2Z)

for any A/2Z with |A|<�.
We should remark that 2Z in !2Z

2n in Corollary 2 can be replaced
by B/2Z with |2Z"B|<�, and a random set B which is Bernoulli
distributed with parameter % # (0, 1], by modifying our proofs slightly.
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Moreover, combining (1.4) with A=[x], B=[ y] and Theorem 1, we
get the following relation between local survival probability _([x], [ y])
and global survival probability _([x], 2Z). Note that _([x], 2Z)=
_([ y], 2Z) for any x, y # 2Z.

Corollary 3. We assume that 0�p1�p2<2p1 . Let := p2
1�(2p1& p2).

For any x, y # 2Z,

_([x], [ y])=:_([x], 2Z)2 (1.7)

In particular, when p2=2p1& p2
1 (oriented bond percolation), then we

have

_([x], [ y])=_([x], 2Z)2 (1.8)

and, when p2= p1 (oriented site percolation), then we have

_([x], [ y])= p1_([x], 2Z)2 (1.9)

From (1.7), we see that _([x], [ y]) is independent of y. Recently Inui et
al.(4) conjectured special cases of the above results, i.e., (1.8) and (1.9) with
x= y, by Pade� approximants of series expansion. Therefore, to prove (1.9)
was one of our motivations of the present paper. Concerning (1.8), this
equality can be easily obtained by the complete convergence theorem as in
the case of the basic contact process, since oriented bond percolation is
self-dual.

Theorem 1 can be regarded as a generalization of time-reversal duality
in limit of time n � �. It should be noted that this self-duality holds
for any p1 # [0, 1), p2 # (0, 1], and p2<2p1 , in our theorem. Another
generalization of duality for continuous-time and nonattractive models as
been studied by Sudbury and Lloyd.(5, 6) In their results, however, self-
duality holds only for special cases.

2. PROOF OF THEOREM 1

First we introduce these spaces:

S=[s=(x, n) # Z_Z+ : x+n=even]

B=[b=((x, n), (x+1, n+1)), ((x, n), (x&1, n+1)) : (x, n) # S ]

X(S )=[0, 1]S, X(B)=[0, 1]B, X=X(S )_X(B)
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where Z+=[0, 1, 2,...]. For given `=(`1 , `2) # X, we say that s=
( y, n+k) # S can be reached from s$=(x, n) # S and write s$ � s, if there
exists a sequence s0 , s1 ,..., sk of members of S such that s$=s0 , s=sk and
`1(si )=1, i=0, 1,..., k, `2((si , si+1))=1, i=0, 1,..., k&1. We also say that
G/S can be reached from G$/S and write G$ � G, if there exist s # G and
s$ # G$ such that s$ � s.

We introduce the signed measure m on X defined by

m(4)=:k1(1&:) j1 ;k2(1&;) j2

for any cylinder set

4=[(`1 , `2) # X: `1(si )=1, i=1, 2,..., k1 , `1(s$i )=0, i=1, 2,..., j1 ,

`2(bi )=1, i=1, 2,..., k2 , `2(b$i )=0, i=1, 2,..., j2]

where s1 ,..., sk1
, s$1 ,..., s$j1 are distinct elements of S and b1 ,..., bk2

, b$1 ,..., b$j2
are distinct elements of B, and := p2

1 �(2p1& p2), ;=2& p2 �p1 .
If p2<2p1 and p2>2p1& p2

1 , then :>1 and ; # (0, 1). If p2�2p1& p2
1

and p2�p1 , then :, ; # [0, 1]. This case corresponds to the mixed site-
bond oriented percolation with the probability of open site : and with
the probability of open bond ; where p1=:; and p2=:(2;&;2). That is
why we choose := p2

1�(2p1& p2) and ;=2& p2 �p1 in our construction.
Moreover, if p2<p1 , then : # (0, 1) and ; # (1, 2]. From the above obser-
vation, we see that the measure becomes signed measure in the first and
third cases, since :>1 and 1&;<0 respectively. Concerning the relation
between the original models with p1 and p2 and this construction with :
and ;, see Fig. 1.

We define the conditional signed measures as follows:

mk( } )=m( } | `1(s)=1, s # Sk)

mk, j ( } )=m( } | `1(s)=1, s # Sk _ S j )

where Sk=[(x, n) # S: n=k]. Then by simple observation we see that

P(!A
n % y)=m0([0]_A � ( y, n))

For a fixed even nonnegative number k, we introduce the map rk from S
to S defined by

rk(x, n)={(x, k&n),
(x, n),

n=0, 1,..., k;
otherwise,
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File: 822J 251307 . By:XX . Date:05:04:00 . Time:14:46 LOP8M. V8.B. Page 01:01
Codes: 1263 Signs: 714 . Length: 44 pic 2 pts, 186 mm

Fig. 1. The relation between the original models with p1 and p2 and the construction with
: and ;. The open (resp. closed) sites with `1(s)=1 (resp. 0) are denoted by full (resp. open)
circles and the open (resp. closed) bonds with `2(b)=1 (resp. 0) are denoted by full (resp.
broken) lines. The configurations on the enclosed sites are given. We consider all the cases
in which the site below is open and it is connected to one of the enclosed open sites by at
least one open bond. For each open site put : and for each open (resp. closed) bond put ;
(resp. 1&;).

and the map Rk form X to X defined by

Rk `=((Rk`)1 , (Rk `)2);

(Rk`)1 (s)=`1(rks), (Rk`)2 ((s, s$))=`2((rks$, rk s))
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Note that m is Rk -invariant. To prove Theorem 1 we use the following
lemma. This is a trivial Markov chain fact, however for the convenience of
the reader, we present the proof.

Lemma 4. Suppose that p1 # [0, 1) and p2 # [0, 1]. Then for any
positive integer l and A/2Z, we have

lim
n � �

P(1�|!A
n |�l, 0A

�)=0

where 0A
�=[!A

n {< for any n�0].

Proof. We can choose ===( p1 , p2 , l)>0 such that

P(1�|!A
n |�l, !A

n+l=<)�=P(1�|!A
n |�l)

Then

P(1�|!A
n |�l, 0A

�)�P(1�|!A
n |�l, !A

n+l{<)

�(1&=) P(1�|!A
n |�l)

Hence

=P(1�|!A
n |�l, 0A

�)�(1&=) P(1�|!A
n |�l, (0A

�)c)

�(1&=) P(!A
n {<, (0A

�)c)

Therefore

lim
n � �

P(1�|!A
n |�l, 0A

�)� lim
n � �

1&=
=

P(!A
n {<, (0A

�)c)=0

This completes the proof.

Now we prove Theorem 1. Suppose that n is even. To begin, we
observe

P(!2Z
n & A{<)

=m0(S0 � A_[n])

= :
D/A, D{<

m0(S0 � A_[n], `1((x, n))=1 for any x # D

`1((x, n))=0 for any x # A"D)
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= :
D/A, D{<

m0(S0 � D_[n], `1((x, n))=1 for any x # D

`1((x, n))=0 for any x # A"D)

= :
D/A, D{<

m0, n(S0 � D_[n]) : |D|(1&:) |A"D|

Since m is Rn -invariant, m0, n is also Rn -invariant. So we see that

m0, n(S0 � D_[n])

=m0, n(D_[0] � Sn)

= :
C : 0<|C | <�

m0, n(D_[0] � (x, n&1) for any x # C,

D_[0] �% C c_[n&1], C_[n&1] � Sn)

= :
C : 0<|C | <�

m0([0]_D � (x, n&1) for any x # C,

D_[0] �% C c_[n&1])_mn&1, n(C_[n&1] � Sn)

= :
C : 0<|C | <�

P(!D
n&1=C)[1&(1&;)2|C |]

=P(!D
n&1{<)&E[(1&;)2 |!D

n&1 |; !D
n&1{<]

where G$ �% G(G, G$/S) means that there exist no s # G and s$ # G$ such
that s$ � s.

Hence, to obtain (1.5) it is enough to show

lim
n � �

E [(1&;)2 |!D
n&1 |; !D

n&1{<]=0 (2.1)

For any l # [1, 2,...], we see that

E [(1&;)2 |!D
n&1 |; !D

n&1{<]

�E[(1&;)2 |!D
n&1 |; 0D

�]+P(!D
n&1{<, (0D

�)c)

�P(1�|!D
n&1 |�l, 0D

�)+(1&;)2l+P(!D
n&1{<, (0D

�)c) (2.2)

Note that [!D
n&1{<]"0D

� converges to the empty set as n � �. So, by
(2.2) and Lemma 4 we have

lim
n � �

E [(1&;)2 |!D
n&1 |; !D

n&1{<]�(1&;)2l
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for any l # [1, 2,...]. Under the condition that 0<p2<2p1 , we have
1&;= p2 �p1&1 # (&1, 1). Therefore, letting l � � gives the desired
result (2.1).
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